Final Exam — Analysis (WPMA14004)

Thursday 16 June 2016, 9.00h-12.00h

University of Groningen

Instructions

- 1. The use of calculators, books, or notes is not allowed.
- 2. Provide clear arguments for all your answers: only answering "yes", "no", or "42" is not sufficient. You may use all theorems and statements in the book, but you should clearly indicate which of them you are using.
- 3. The total score for all questions equals 90. If p is the number of marks then the exam grade is G = 1 + p/10.

Problem 1 (3 + 12 points)

- (a) State the Axiom of Completeness.
- (b) Assume that the sets $A, B \subset \mathbb{R}$ are both bounded above. Prove that

$$\sup(A \cup B) = \max\{\sup A, \sup B\}.$$

Hint: first explain that it suffices to consider only the case $\sup A \leq \sup B$.

Problem 2 (4+4+7 points)

Consider the sequences (t_k) and (s_n) given by

$$t_k = \frac{1}{k} - \ln\left(\frac{k+1}{k}\right)$$
 and $s_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} - \ln(n+1)$.

Prove the following statements:

(a)
$$\sum_{k=1}^{n} t_k = s_n$$
 for all $n \in \mathbb{N}$.

(b)
$$0 \le t_k \le \frac{1}{2k^2}$$
 for all $k \in \mathbb{N}$. Hint: $x - \frac{1}{2}x^2 \le \ln(1+x) \le x$ for all $x \ge 0$.

(c) (s_n) is convergent.

Problem 3 (5 + 10 points)

Let $B \subset \mathbb{R}$ be a set of positive real numbers with the following "finite sum property": adding finitely many elements of B gives a sum of 1 or less.

Prove the following statements:

- (a) For all $\epsilon > 0$ there exist only finitely many $x \in B$ with $x > \epsilon$.
- (b) $B \cup \{0\}$ is compact.

Problem 4 (4 + 4 + 7 points)

Consider the following function:

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = \frac{x}{1+|x|}.$$

Prove the following statements:

- (a) f is differentiable at x = 0 and f'(0) = 1.
- (b) f is differentiable at $x \neq 0$ and 0 < f'(x) < 1.
- (c) f is uniformly continuous on \mathbb{R} .

Problem 5 (3 + 6 + 6 points)

Let $g: \mathbb{R} \to \mathbb{R}$ be a function with domain \mathbb{R} . Consider the following sequence:

$$f_n(x) = \frac{ng(x)}{n + |g(x)|}.$$

Prove the following statements:

- (a) $|f_n(x) g(x)| \le \frac{g(x)^2}{n}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$.
- (b) If g is bounded on \mathbb{R} , then $f_n \to g$ uniformly on \mathbb{R} .
- (c) If g is continuous on \mathbb{R} , then $f_n \to g$ uniformly on all compact subsets of \mathbb{R} .

Problem 6 (9 + 6 points)

Consider the modified Dirichlet function $h:[0,1]\to\mathbb{R}$ defined by

$$h(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ 0 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

- (a) Show that $U(h, P) > \frac{1}{2}$ for any partition P of [0, 1]. Hint: prove that $x_k(x_k - x_{k-1}) > \frac{1}{2}(x_k + x_{k-1})(x_k - x_{k-1})$.
- (b) Is h integrable on [0,1]?

End of test (90 points)